



**TETRAHEDRON** 

Tetrahedron 59 (2003) 8641-8642

## Corrigendum

## Corrigendum to: "Unusual reaction of N-aroyl-dihydrocyclopentapyrazolidinol with ketenes: formation of 1,3,4-oxadiazoles" [Tetrahedron 59 (2003) 4591−4601]<sup>★</sup>

Constantinos A. Tsoleridis, Julia Stephanidou-Stephanatou, Petros Gounaridis, Hara Zika and Minodora Pozarentzi

Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Table 4 in the article published in Volume 59, Issue 25, on page 4595 appears incorrectly.

The correct version of this table appears on the following page.

0040–4020/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2003.09.003

<sup>&</sup>lt;sup>th</sup> doi of original article 10.1016/S0040-4020(03)00633-1

**Table 4**. <sup>13</sup>C, <sup>1</sup>H and COLOC NMR data for compounds **7a** and **7b** 

| Position | Compound 7a |                                    |                      | Compound 7b                 |                                |                                        |
|----------|-------------|------------------------------------|----------------------|-----------------------------|--------------------------------|----------------------------------------|
|          | С           | $\mathrm{H}^{\mathrm{a}}$          | COLOCb               | C                           | $H^a$                          | COLOCb                                 |
| 3        | 157.87      |                                    |                      | 158.48                      |                                |                                        |
| 3-Me     | 13.97       | 1.69 (s)                           | 157.85, 75.89        | 14.00                       | 1.62 (s)                       | 158.48, 75.87                          |
| 3a       | 75.90       |                                    |                      | 75.87                       |                                |                                        |
| 4        | 33.59       | $2.93-3.04 \text{ (m)}^{\text{c}}$ |                      | 33.44                       | 2.93-3.33 (m), <sup>c</sup>    |                                        |
| 4        |             | 1.71-1.76 (m)                      |                      |                             | 1.69-1.73 (m)                  | 104.18                                 |
| 5        | 23.18       | 1.87-1.98 (m)                      |                      | 23.01                       | 1.83–1.95 (m),                 | 104.18, 75.87                          |
| 5        |             | 1.37-1.53 (m)                      |                      |                             | 1.33-1.49 (m)                  |                                        |
| 6        | 41.94       | 2.11-2.23 (m)                      |                      | 41.88                       | 2.11-2.21 (m),                 | 23.01                                  |
| 6        |             | 2.64-2.73 (m)                      |                      |                             | 2.71-2.79 (m)                  | 104.18, 75.87                          |
| 6a       | 104.08      |                                    |                      | 104.18                      |                                |                                        |
| OH       |             | 5.01 (br, s)                       | 75.89                |                             | 5.03 (s)                       | 104.18, 75.87                          |
| 7        | 195.16      |                                    |                      | 194.54                      |                                |                                        |
| 8        | 137.73      |                                    |                      | 137.31                      |                                |                                        |
| 9        | 128.84      | 7.75-7.81 (m)                      | 195.14, 132.63       | 128.78 <sup>d</sup>         | 7.53-7.62 (m)                  | 194.54, 132.62                         |
| 10       | 128.24      | 7.35-7.43 (m)                      | 137.71               | 128.17                      | 7.11-7.20 (m)                  | 137.31                                 |
| 11       | 132.64      | 7.48-7.55 (m)                      |                      | 132.62                      | 7.39-7.47 (m)                  |                                        |
| 12       | 176.63      |                                    |                      | 170.87                      |                                |                                        |
| 13       | 32.10       | 3.38 (sep, 6.9)                    |                      | 54.59                       | 5.99 (s)                       | 170.87, 139.14, 139.06, 129.14, 128.94 |
| 14       | 18.40       | 1.21 (d, 6.9)                      | 176.62, 32.10, 18.75 | 139.14, <sup>e</sup> 139.06 |                                |                                        |
| 15       | 18.75       | 1.27 (d, 6.9)                      | 176.62, 18.40        | 129.14, 128.94              | 7.30 - 7.44, $f$ $7.40 - 7.52$ |                                        |
| 16       |             |                                    |                      | 128.73, <sup>d</sup> 128.43 | 7.30-7.47, 7.30-7.47           |                                        |
| 17       |             |                                    |                      | 127.10, 127.09              | 7.22-7.29, 7.33-7.40           |                                        |

 $<sup>^{</sup>a} \ \, \text{Multiplicities and couplings in Hz in parentheses. For exact values of chemical shifts and coupling constants of cyclopentane-ring protons see Table 5.} \\ ^{b} \ \, \text{Long-range} \ (^{2}J_{C-H} \ \, \text{and} \ ^{3}J_{C-H}) \ \, \text{correlations between the protons on the left and the carbons stated on the column.} \\ ^{c} \ \, \text{Presented in } \alpha, \ \, \beta \ \, \text{order}. \\ ^{d} \ \, \text{May be interchanged.} \\ ^{e} \ \, \text{For both phenyls.} \\ ^{f} \ \, \text{Superimposed multiplets distinguished by homo- and hetero-COSY.}$